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Introduction 

High-dimensional immune profiling and antigen-specific T cell 

identification has become indispensable for a comprehensive 

understanding of the immune response to cancer, infectious- 

and autoimmune diseases.  It has the potential to generate 

comprehensive cellular data that may lead to the identification 

of biomarkers and inform the rationale for the development of 

therapeutic intervention strategies and vaccines. 

Complex immune cell compositions in blood or tissue samples 

can be resolved using high-dimensional cell profiling through 

the identification and deep characterization of various immune 

cell subsets, including antigen-specific T cells, which are key 

effector cells in many innovative immunotherapy and vaccine 

strategies. 

 

However, this approach generates a plethora of biological data 

that needs to be processed, analyzed and interpreted in the 

context of clinical parameters in order to derive meaningful 

insights. This white paper provides an overview of the Cytog-

rapher cloud-based analytical pipeline that allows custom 

high-dimensional immune cell profiling and antigen-specific T 

cell identification for providing in-depth insight into immuno-

logical data.



Overview 

Designed and developed by ImmunoScape®, the proprietary cloud-based analysis platform 
Cytographer enables advanced analytics on multi-parametric mass- (CyTOF®) and flow cy-
tometry data. Cytographer is securely accessible from anywhere in the world requiring only a 
web browser, and data are securely stored at a geolocation of the customer’s choice in en-
crypted data vaults of Amazon AWS.  
 
The platform offers a wide range of state-of-the-art analysis and antigen-specific T cell  
identification. The modular nature of the architecture  using container technology (Docker) 
allows flexible scaling for processing of large datasets without compromising on speed and 
can seamlessly be upgraded with newly developed and published tools and algorithms  
(Figure 1). 

Figure 1. The  underlying software architecture of the Cytographer platform supports 
scale-up without compromising on speed and can be seamlessly upgraded with newly 
developed and published tools and algorithms.



The intuitive and straightforward user inter-
face of the Cytographer platform familiarizes 
users with conventional, as well as state-of-
the-art high-dimensional data analysis tools, 
and facilitates complex data analysis without 
the need of programming experience or 
bioinformatic expertise. With a few clicks, a 
user can perform a series of standard data 
analyses or access more advanced tools to 
customize an analytical pipeline according to 
the study-specific experimental design and 

needs. The analytical pipelines generate 
graphical outputs for easy visual interpre-
tation and/or data files for downstream 
processing. Data files can be downloaded 
or further analyzed in Cytographer.

Analytical Features 

The Cytographer platform offers a wide 
range of analytical features for mass- and 
flow cytometry data which are catego-
rized into different modules (Figure 2).

Figure 2. Analytical modules available in the Cytographer platform for mass and flow 
cytometry data



 The high-dimensional analysis module in-
cludes several tools for high-dimensionality 
data reduction and cell clustering, coupled 
with graphical visualizations. The entire 
range of tools currently available in the Cy-
tographer platform for assembly into custom 
analytical pipelines is listed in the Appendix. 
The Heat Plot and Statistical Analysis mod-
ule allow the user to produce customized 
heat maps and to perform statistical analysis 
based on the input data file. Results can be 
downloaded as tables and are also highlight-
ed in various graphical outputs such as box 
plots, bar plots, volcano plots and Principal 
Component Analysis (PCA) biplots.

ImmunoScape can identify rare antigen-spe-
cific CD8 T cells from a large screening of 
hundreds of epitope candidates in a single 
sample via the company’s tetramer multi-
plexing methodology (TargetScape®) while 
still retaining the capacity to perform in-
depth phenotypic profiling.  The tetramer 
deconvolution module facilitates analysis of 
these multiplex data by providing tools for 

Figure 2 - immunoSCAPE co-founders. From right 
to left, Evan Newell, Ph.D., Choon-Peng Ng, Ales-
sandra Nardin, DVM, and Michael Fehlings, Ph.D.

bona fide target identification including au-
tomated quantification and characterization 
of antigen-specific CD8 T cells.

Analytical Pipeline Execution

Each module allows the analysis of data 
stored and organized within a project work-
space as well as data from previous analysis 
or instantly uploaded data files. Relevant 
analytical parameters, such as marker names 
are automatically extracted from the input 
data files. 

The Cytographer platforms offers a standard- 
and advanced user mode where the latter 
unlocks the full range of modifiable parame-
ters and configuration options. Methods can 
be executed individually, or consecutively 
as an analytical pipeline (Figure 3). When a 
pipeline is completed the user receives a no-
tification email. The same analytical pipeline, 
whether default or custom designed, can be 
applied to multiple datasets to ensure con-
sistent data processing across a study.



Figure 3. Example of an analytical pipeline executed in the Cytographer platform. PBMCs from a cohort of 
non-small cell lung cancer patients undergoing anti-PD-L1 treatment were screened for hundreds of tu-
mor-specific mutant antigens (neoantigens) using tetramer multiplexing methodology (TargetScape). Bona 
fide neoantigen-specific T cells were identified using tetramer deconvolution module followed by high-di-
mensional phenotypic analysis of these cells. Subsequent statistical analysis deciphered differences between 
responder and non-responder patients. Results were visualized through several graphical outputs of each 
module. Data from Fehlings et al., 2019 JITC.1



Available Options 
Cytographer was initially developed to facili-
tate data analysis by the ImmunoScape team 
and is now available to the scientific commu-
nity in the following manner: 

The Analysis & Reporting Package is de-
signed primarily for collaborators for whom 
ImmunoScape generates the data and an-
alyzes the results. Full access is provided to 
the platform, as well as a dedicated in-house 
scientist responsible for data analysis and 
final reporting. The Cytographer platform’s 
intuitive interface enables collaborators to 
perform additional data analyses on their 
own even after project conclusion.

The Access Package is intended for scientists 
who have independently generated mass 

Summary 
The volume and complexity of data generated by high-dimension-
al immune profiling can provide valuable insight into how immu-
notherapy impacts the immune system. However, analysis of these 
datasets is complicated, tedious and typically requires higher-level 
bioinformatics skills to optimize the outputs.  

The Cytographer proprietary cloud-based data analytic platform, 
empowers scientists by offering a one-source compilation of state-of-
the-art bioinformatics tools for high-dimensional data analysis and 
antigen-specific T cell identification. The platform facilitates mean-
ingful interpretation of complex biological datasets and their associ-
ation with clinical parameters to enhance the potential value derived 
from clinical trials and other key studies.

or flow cytometry data. This user group can 
utilize Cytographer® tools for more advanced 
analytics for which ImmunoScape provides 
technical support.
 
Future Development 
The analytical tools in the Cytographer plat-
form include both open-source and propri-
etary software. Due to the modular architec-
ture, users can expect continual addition of 
cutting-edge data analysis tools as soon as 
they become available. Ongoing develop-
ments include data pre-processing scripts as 
well as manual and automated gating tools 
in addition to sophisticated statistical meth-
ods for the detection of relevant immune 
cell subsets and their correlation with clinical 
outcomes. 



Tetramer Deconvolution
Automated peptide-MHC gating script for the detection of antigen-specific T cells (hits) using multiplexed 
tetramer technology for screening hundreds of epitope candidates in a single sample (TargetScape). Built-in 
statistical criteria facilitate an unbiased evaluation of bona fide antigen-specific T cells.

High-dimensional Analysis 
Increased dimensionality of biological data requires tools for visualization and interpretable analysis. Di-
mensionality reduction methods that reduce the number of variables into few dimensions while preserving 
significant characteristics, and algorithms that group observations into discrete clusters are powerful tools 
for analyzing high-dimensional data. The Cytographer platform offers a wide array of techniques for data di-
mensionality reduction and cellular clustering which form the basis for population abundance analysis and 
biomarker discovery:

Principal component analysis (PCA)
PCA is a widely used and efficient technique for reducing dimensionality and visualizing relationships in 
multi-dimensional data.2 PCA is able to segregate major populations of cells and to assess similarities and 
differences between samples by condensing data into a manageable number of summary variables (princi-
pal components). Classical PCA performs linear transformations which, however, precludes this technique 
for the segregation of rare or subtly different populations of cells in biological systems. 

t-Distributed Stochastic Neighbor Embedding (t-SNE)
The algorithm in t-SNE reduces high-dimensional data down to two dimensions while preserving its local 
and global geometry.3 t-SNE accounts for non-linear relationships between biological markers and maps 
closely related objects (such as similar cellular phenotypes) to nearby points in the two-dimensional space. 
It is widely used to visually delineate cell subsets and reveal the global structure of complex datasets. The 
method’s strength is in detecting subtle variances in the overall phenotypes of cells.

Isometric feature mapping (ISOMAP)
ISOMAP measures geodesic distances between cells to learn the underlying global geometry between 
different cell types.4  It computes a globally optimal solution to preserve nonlinear interactions and global 
relationships between cells and cell clusters. ISOMAP facilitates investigating differentiation trajectories and 
mapping phenotypic progressions between different clusters of cells.

Diffusion maps
Similar to ISOMAP, Diffusion maps preserve non-linear interactions and global relationships between cells.5 
The method allows for the detection of developmental trajectories and continuous branching events of 
differentiating cells including rare cell populations. Diffusion maps are mainly used for visualizing continuity 
in single-cell data with a robustness to noise and sample heterogeneity.
 

Appendix: Analytical modules and tools



One-dimensional Soli-expression by Nonlinear Stochastic Embedding (One-SENSE) 
Based on the t-SNE algorithm, One-SENSE allows the grouping of measured parameters into pre-defined 
categories.6 In a One-SENSE plot, cells are projected onto a space composed of one dimension for each cate-
gory, and each dimension (axis) represents one of these categories. Heat plots that are aligned in parallel to 
each axis allow for simultaneous visualization of each category across the plot and for direct assessment of 
the relationships between the categories. One-SENSE facilitates a type of categorical unsupervised analysis 
and can be used to resolve the relationships between the cellular arrangement and the underlying parame-
ters

Uniform Manifold Approximation and Projection (UMAP)
UMAP is a novel manifold learning technique for dimensionality reduction that works similarly to t-SNE. As 
compared to t-SNE, UMAP has no computational restrictions in embedding large high-dimensional datasets 
and is often better at preserving global structures, thus revealing potentially more meaningful inter-cluster 
relations in the final projection. Shorter run times while providing good resolution of rare cell types and de-
velopmental trajectories make UMAP a valuable tool for a non-linear dimensionality reduction of single-cell 
data.

Potential of heat diffusion for affinity-based transition (PHATE)
PHATE is a dimensionality reduction method that preserves the local and global non-linear data structure 
using an information-geometric distance between data points.7 PHATE provides a denoised visualization 
of high-dimensional data with many different underlying structures including trajectories, branches and 
clusters. Without imposing any strong assumptions on the structure of the data, PHATE is highly scalable in 
memory and run time and can be used to present large information into low dimensions.

PhenoGraph
PhenoGraph is an unsupervised clustering tool that partitions cells based on their connectivity to one 
another.8 By creating a network that represents phenotypic similarities between cells, it facilitates the identi-
fication of sub-populations in high-dimensional single-cell data without prior knowledge. PhenoGraph runs 
efficiently on large datasets and enables coherent grouping of cells into meaningful populations with high 
stability.

FLowSOM
FlowSOM is an algorithm that uses self-organizing maps (SOM) as an unsupervised technique for cell clus-
tering and visualization.9 Utilizing hierarchical clustering, all events are sorted into a user-defined number of 
meta-clusters. Through successive iterations of training, each multidimensional data point is assigned to a 
node that it most closely resembles. FlowSOM shows high precision in preserving rare populations in dis-
tinct nodes.

Heat Plot and Statistical Analysis
Heat plots visualize various data inputs as color schemes in a two-dimensional representation. Differences in 
datapoints are represented by variations in the color intensities. Heat plots produced in Cytographer display 
marker Z-scores or non-scaled values and employ clustering using Euclidean distance or Pearson’s correla-
tion distances while still preserving sample grouping using distinguishable colors.
 
Cytographer®  performs assumptions to test whether each data group is normally distributed and shows ho-
mogeneity of variance across levels. Depending on the assumptions made, different parametric or non-para-
metric tests are performed to test for significant differences between the input parameters. P-values are 
corrected for multiple testing using the False Discovery Rate (Benjamini-Hochberg) method. Data analyzed 
through Cytographer’s®  statistical module are visualized as PCA biplots, boxplots, bar plots and volcano 
plots, highlighting statistical differences in the input files.
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